چکیده

بررسی اثر روش های کاربرد کود بیولوژیکی فسفاته و کود شیمیایی فسفره بر برخی صفات رشد و

\textit{(Calendula officinalis L.)}

در چند دهه اخیر مصرف نهاده‌های شیمیایی در کشاورزی موجب معطولاً زیست محیطی فروان و کاهش میزان حاصلخیزی

حاک شده است. روشک دچاری با هدف مصرف کودهای زیستی در جهت کاهش آلودگی حاصل از نهاده‌های شیمیایی و افزایش کمیت

و کیفیت تولیدات گیاهی در راستای کشاورزی با پایدار می باشد. به منظور بررسی اثر متقابل روش‌های مختلف کاربرد کود زیستی

فسفاته بارور-۲ بر کیفیت و کیفیت گیاه دارویی، زینتی همیشه بهار (Calendula officinalis L.)، آزمایش فاکتوری بی ۲ فاکتور-۱

روش‌های مختلف کاربرد کود زیستی فسفاته بارور-۲ در چهار سطح M1 (بدون استفاده از کود فسفاته بارور)، M2 (کود بارور بسیار مسیحی M)، M3 (کود بارور بسیار مسیحی M) P1 (سنگ)، P2 (سنگ)، P3 (سنگ)، P4 (سنگ) (سفر)، P5 (سفر)، طرح آزمایشی در چهار سطح P

تعدادی با ۱۶ تیمار، تیمار و در هر تیمار ۵ گلدان انگام شد. در این آزمایش صفات همچون تعداد گل، ارتفاع فصلی بوته، تعداد گر

در بوته و رنگدانه کاروتئئید، مورد آزمایش قرار گرفته. نتایج نشان داد که اثر متقابل بین P و M تیمار P و M روی بیشتر صفات در سطح احتمال

1 و ۵ معنی دار شده است. تیمار P (کود بارور بسیار مسیحی M) P4 (سنگ) (سفر) در صفات مانند تعداد گل (۱۲/۸۳ عدد)، ارتفاع نهایی بوته (۴۵ سانتی متر) و مقدار کاروتئئید (۱۳/۸۳ میلی گرم با گرم) در صفات مانند تعداد گل (۱۱/۶۶ عدد)، ارتفاع نهایی بوته (۳۸/۳۶ سانتی متر)، تعداد گرک در بوته (۷۲/۲۶ عدد) و مقدار کاروتئئید (۳۲/۳۶ میلی گرم با گرم) به عنوان بهترین تیمارها قابل توصیه می‌باشد.

\footnote{1}
واژگان کلیدی: گیاه دارویی، کاروتئنید، سوپر فسفات تریبل، کود فسفاته بارور، کشاورزی پایدار.

مقدمه
گیاه همیشه به‌پایه (Calendula officinalis L.) با نام انگلیسی Pot Marigold متعلق به خانواده آفتابگردان می‌باشد. خانواده آفتابگردان بزرگترین تبره گیاه‌های دیپ درجه ای به شمار می‌رود (قائسی فهصاره و کافی، 1380). منشاء آن مدیرانی و غرب آسیا و اروپای مرکزی گزارش شده است (پرتری و همکاران، 2002). گله‌ای همیشه به‌پایه یکی از عمده گیاه‌های محلی است که به عنوان یک باردارندگان فعلی و تک‌سیر سلول‌های تومور عمل می‌کند (اسامی و همکاران، 2010). عصاره همیشه به‌پایه دارای اثرات دارویی از قبیل انتاب خم، ضد انتاری، ضد فیتوکشیک، ضد تومور، ضد HIV و غیره است (آراز، 2008). به عنوان یک گل فصلی (نتاشیبی) یکساله و مقاوم به سرما کشت و کار می‌شود. این گل با ارتفاع متوسط، رشد متراکم و گل‌های خوبی که دارای گیاه‌بر کننده مناسبی بین سایرگیاهان به شمار می‌رود (حمکتی، 1390). اساس گله‌ای همیشه به‌پایه در غذا و دارو مورد استفاده قرار می‌گیرد. کرم کالندولا و مواد حاصل از همیشه به‌پایه، هیچ گونه تاثیر جانبی آلرژی را نشان نداده و اثبات شده است که مصرف مقدار زیاد کالندولا، مانند یک ماسک می‌کند که فشار ناپایین می‌آورد. نوع پرتابلی رنگ گل همیشه به‌پایه از نظر دارویی برتری دارد چرا که دارای مقدار زیادی مواد موثره است. فسفر گیاه نشان‌دهنده مهمی دارد که از آن جمله می‌توان به رشد پنیر رشد، افزایش گل‌دهی و شکل‌بندی، رشد ظاهری و مقاوم به سرما کننده داشت. این ترتیب در گیاه است. در خاک‌های اسیدی، یک‌سیم و تا حدودی کردن کل‌سیم، عصاره تبدیل فسفر می‌شود و فسفر به شکل تام‌نال در می‌آید. در خاک‌های اسیدی و قلب‌پر (مثل شریف ایران) یک‌سیم و تا حدودی کردن کل‌سیم، عصاره تبدیل فسفر می‌شود و در نتیجه تبدیل کود مصرف Phosphate شده کم و کود برای گیاه غیر قابل استفاده می‌گردد (ایرانی پور و همکاران، 1385). باکتری‌های آزادکننده فسفر با شده در خاک‌های حاوی فسفر معدنی برای تبدیل فسفر غیر قابل جذب برای گیاه به فسفر فعل و قابل Jibz بکار می‌رود. در ازای اینکه با استفاده از یک گونه باکتری حق کننده فسفات بر روی کفیف اساس گیاه دارویی علف و محصولات انجام
شده، مشاهده شد که درصد زراتیون در استان به طرزی چشمگیری نسبت به شاهد افزایش یافت (راتی و همکاران، 1992). این گروهی از محققان گزارش کردند که کاربرد کودهای زیستی از جمله کودهای حاوی باکتری های حل کننده فسفات و کودهای آئی منجر به بهبود عملکرد کمی و کیفی در گیاهان زراعی و باعث می‌شود (طاهی و همکاران، 2001).

در آزمایش یافته تیپ کود زیستی فسفاته بر روی خصوصیات کمی و کیفی گیاه حاصل از خودکاری و یکی از خصوصیات در جمله ارتقاء گیاه، وزن ساقه و جذب فسفر کل اندام گیاهی کرده است (هاشم آبادی و همکاران، 2012). در سالهای اخیر مرشد و پرستاران کودهای شیمیایی صرف نظر از مسئله زبست محیطی باعث روز مشکلاتی در خاکهای زراعی شده است، متلاعا و وقتی کود های شیمیایی فسفر به خاک افزوده می‌شود، مقدار کمی از این جذب گیاه شده و قسمت عمده آن بصورت ترکیبات نامحلول در خاک (خصوصا خاکهای آهکی) تثبیت می‌شود.

تأمین عناصر غذایی برای گیاهان زینتی فراوانی دقیق بوده و برای رشد مطلوب گیاه مواد غذایی باید در اندازه‌های معادل و کافی قابل دسترسی باشد (محیط خمیشی، 1386). همچنین از آنجا که رویکردهای جدیدی با هدف مصرف کودهای زیستی در جهت کاهش آلودگی حاصل از نهاده‌های شیمیایی و افزایش کمیت و کیفیت تولیدات گیاهی به‌خوانده، هدف از انجام این پژوهش تانی‌گاری‌برد روشهای مختلف استفاده از کود زیستی فسفات با بار و اثر متقابل آن با کود شیمیایی فسفر (سوزر فسفات ترابل) بوده است. این تحقیق در سال 93-91 بصورت گل‌هایی به صورت آزمایش فاکتوری لبی طرح بلوک‌های کامل تصادفی در 3 تکار، 16 تیمار، 48 پلات و در هر پلاط 5 پلاط در این تحقیق‌ها کود گیاهان زینتی لاهیجان انجام شد. این آزمایش شامل دو فاکتور بود که فاکتور اول روش استفاده از کود پیژودیک از فسفر به‌شمار می‌رود: شناخت کود پیژودیک (M1)، غشتن کود پیژودیک (M0) و فاکتور دوم 4 سطح فسفر خالص شیمیایی شامل: صفر میلی گرم در لیتر (P1)، 100 میلی گرم در لیتر (P2)، 200 میلی گرم در لیتر (P3) و 300 میلی گرم در لیتر (P4) می‌باشد. این تحقیق در لاهیجان انجام شد. به‌طور کلی، این آزمایش تیمار برمال، بهره‌های همبسته زیادی داشت که از کاسته‌های فسفات بهره برد. این آزمایش شامل 60 تیمار بود که از این میان 20 تیمار از کودها حاصل از کشت با اکسیژن، 20 تیمار از کودها حاصل از کشت با نیتروژن و 20 تیمار از کودها حاصل از کشت با نیتروژن و آتانور داشت. هر گروه از کودها دو تیمار به دو المحصول استفاده شد تا تغییرات را در محصول کرده و دومین مرحله 20 روز پس از کود کردن انجام شد. میزان مصرف ماده غذایی گیاه کمتر از گروه کنترل بود. این آزمایش به‌طور کلی نشان داد که کودهای زیستی مصرف شده می‌تواند در کاهش آلودگی محیطی و بهبود کیفیت محصول بر کار تأثیرگذار باشد.
گلبرگ‌ها با استون انجام شد. فسفر گیاه و بستر پس از عصاره‌گیری از گیاه توسط دستگاه اسپکتروفتوسپر در طول موج 480 نانومترتراندازه‌گیری شدند. داده‌ها به کمک نرم‌افزار SPSS تجزیه و تحلیل شد و مقایسه میانگین تیمارها به کمک روش آزمون چند تریسر شدند.

نتایج

نتایج تجزیه و اریانس داده‌های بدست آمده از آزمایش نشان داد که اثر متقابل روش‌های مصرف باکتری‌های حل کننده فسفر و مقادیر مختلف فسفرگذاری‌های بر روی اثرات اندوزه‌گیری کشف شده در سطح آماری ۱ و ۵ درصد معنی دار بوده است.

تعداد گل

نتایج حاصل از مقایسه میانگین داده‌های اثر متقابل روش مختلف مصرف کود بیولوژیک و مقادیر مختلف فسفر بر روی تعداد گل نشان داد که بین تیمارها در سطح آماری ۵ درصد اختلاف معنی دار وجود دارد و تیمار P با تعداد ۱۱/۷۶ عدد و تیمار M با تعداد ۱۳/۸۳ عدد گل نسبت به سایر تیمارها برتری داشته‌اند (شکل ۱).
نمودار 1- اثر متقابل روش مصرف کود بیولوژیک و مقادیر مختلف فسفر بر تعداد گل همیشه بهار

نتایج حاصل از مقایسه میانگین تیمارها در مورد اثر متقابل روش‌های مختلف استفاده از کود بیولوژیک فسفاته بارور-2 و مقادیر مختلف فسفر شیمیایی نشان می‌دهد که بین تیمارهای کود بیولوژیک و مقادیر مختلف فسفر در سطح آماری ۰/۰۵ هر دو اختلاف معنی‌داری وجود دارد. در مورد اثر متقابل، تیمار M₄P₄ با ارتفاع ۱۱/۷۶ سانتی‌متر نسبت به سایر تیمارها برتری داشته است.

(۳)
تعداد برگ در بوته

تجزیه واریانس حاصل از تیمارها نشان می‌دهد که اثر متقابل روش‌های مصرف کود بیولوژیک و مقادیر مختلف فسفر بر تعداد برگ در بوته در سطح آماری 0/05 درصد معنی‌دار نشده است. نتایج مقایسه میانگین داده‌های اثر متقابل روش تعداد برگ در بوته نشان می‌دهد که بین تیمارها اختلاف معنی‌داری وجود دارد و تیمار M4-P4 با 28/7 عدد برگ بیشترین تعداد برتری محسوسی نسبت به M3-P1 با 23/82 عدد برگ کمترین تعداد برگ را در بین تیمارها داشته است (شکل 3).
مقدار کاروتئنید

تجزیه و بررسی حاصل از داده‌های تیمارها نشان می‌دهد که اثر متقابل روشهای مختلف استفاده از کود بیولوژیک فسفاته و مقدار مختلف فسفر روی رنگ‌دانه کاروتئنید موجود در گل‌برگ‌ها در سطح آماری ۱ درصد معنی‌دار شده است. همچنین مقایسه میانگین داده‌های اثر متقابل نشان می‌دهد تیمار M۳P۴ با ۶/۲ میلی گرم بر گرم وزن خشک بیشترین مقدار کاروتئنید و بهترین تیمار اثر متقابل بوده است و تیمار M۰P۴ با ۷/۲ میلی گرم بر گرم وزن خشک کمترین مقدار کاروتئنید را داشته‌اند (شکل ۴).
بیان تحقیق و نتیجه‌گیری
نتایج تجزیه و اریان داده‌ها نشان داد که اثر متغیرین بین P و M و روش‌های مصرف کود زیستی فسفاته و مقادیر مختلف فسفر رود بیشتر صفات انداره‌گیری شده در این آزمایش بین سطح امکان‌ها 1 و 5 درصد معمی شده است. مطالعه و همکاران (۱۳۹۰) گزارش دانشکده که که در اثر کاربرد کود نیتروژن و باکتری‌های حیل کندنده فسفات بر خصوصیات مورفولوژیک و مواد مولکولی گیاه داروبی هم‌سازه بهار در مجموع، بیشترین میزان ارتفاع گیاه تعداد گیاه اسان و عصاره خشک از نیم‌فطر ماداف ۱۴۰ کیلوگرم در هکتاو ارت و تلفیع با بارور ۲ دست آمد. اثر افزایشی کود زیستی فسفر بر تعداد گیاه با نتایج خلوتی و همکاران (۲۰۰۵) در یک راستا. بوده است. از آنجایی که فسفر جز ساختمان تعدادی از ترکیبات حیاتی از قبیل مولکول‌های انتقال دهنده افزایش، NAD، ATP، ADP، NADPH استرهای فسفات و ترکیبات سیستم انتقال اطلاعات زننیکی مثل RNA و DNA است و همچنین یک جزو ساخته‌ای Fسفولیپیدها نظیر لستین و کولین این است که دلیل مهمی در سلامتی غشاء را به عهده دارد (خانمی و همکاران، ۱۳۸۷) و باعث سهولت در جذب از و فسفر و خوراکی گیاهان می‌شود که باعث بهبود خصوصیات رشدی گیاه از جمله ارتفاع گیاه، عمکرید بیولوژیک و تعداد گل طی تحقیق موجود گردد. پروپوسف و همکاران (۱۳۸۹) با بررسی اثر نیم‌فطری مختلف حاضری‌زی خاک بر روی افزایش بهبود در کردن که ارتفاع بیشتر افزوده به طور معنی‌داری تحت تاثیر کود زیستی فسفاته قرار می‌گیرد. دهقانی مشکانی و همکاران (۱۳۹۰) در شکل ۴- اثر متغیرین روش مصرف کود بیولوژیک و مقادیر مختلف فسفر بر مقدار کاروتئنید در همیشه هیبق

<table>
<thead>
<tr>
<th>گروه</th>
<th>نتیجه گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1P1</td>
<td>1.35f</td>
</tr>
<tr>
<td>M1P2</td>
<td>2.57cde</td>
</tr>
<tr>
<td>M1P3</td>
<td>2.82c</td>
</tr>
<tr>
<td>M1P4</td>
<td>2.68d</td>
</tr>
<tr>
<td>M2P1</td>
<td>1.5ef</td>
</tr>
<tr>
<td>M2P2</td>
<td>2.51cde</td>
</tr>
<tr>
<td>M2P3</td>
<td>2.81c</td>
</tr>
<tr>
<td>M2P4</td>
<td>3.27bc</td>
</tr>
<tr>
<td>M3P1</td>
<td>0.77f</td>
</tr>
<tr>
<td>M3P2</td>
<td>1.67def</td>
</tr>
<tr>
<td>M3P3</td>
<td>3.08bc</td>
</tr>
<tr>
<td>M3P4</td>
<td>2.51cde</td>
</tr>
<tr>
<td>M4P1</td>
<td>1.44f</td>
</tr>
<tr>
<td>M4P2</td>
<td>1.67def</td>
</tr>
<tr>
<td>M4P3</td>
<td>4.11b</td>
</tr>
<tr>
<td>M4P4</td>
<td>5.38a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>کیفیت</th>
<th>نتیجه گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/g D.W</td>
<td></td>
</tr>
<tr>
<td>0.77f</td>
<td></td>
</tr>
<tr>
<td>1.35f</td>
<td></td>
</tr>
<tr>
<td>1.5ef</td>
<td></td>
</tr>
<tr>
<td>1.67def</td>
<td></td>
</tr>
<tr>
<td>2.57cde</td>
<td></td>
</tr>
<tr>
<td>2.82c</td>
<td></td>
</tr>
<tr>
<td>2.68d</td>
<td></td>
</tr>
<tr>
<td>2.51cde</td>
<td></td>
</tr>
<tr>
<td>2.81c</td>
<td></td>
</tr>
<tr>
<td>3.27bc</td>
<td></td>
</tr>
<tr>
<td>0.77f</td>
<td></td>
</tr>
<tr>
<td>1.67def</td>
<td></td>
</tr>
<tr>
<td>3.08bc</td>
<td></td>
</tr>
<tr>
<td>2.51cde</td>
<td></td>
</tr>
<tr>
<td>4.11b</td>
<td></td>
</tr>
<tr>
<td>5.38a</td>
<td></td>
</tr>
</tbody>
</table>
تحقیقی با عنوان تاثیر کودههای زیستی و شیمیایی بر عملکرد کمی و کیفی گیاه دارویی بابونه شیرازی به این نتیجه رسیدند که بیشترین ارتقای بونه با کاربرد کودههای بیولوژیک به همراه کودههای شیمیایی و کمترین ارتقای بونه با کاربرد کودههای شیمیایی به تنهایی

بدست می‌یابیم (۲۰۰۸) نشان داد در اثر تلقیح قارچ و زیکول آریوکولاز مشاهده نمود که این کودههای زیستی باعث افزایش تعداد برگ درسنا شده است. تاثیر کودههای زیستی به طور قابل توجهی تغییراتی در افزایش می‌دهد که ممکن است به دلیل افزایش محتوای از زخم در نتیجه تبیت از و فسفر قابل حذف توسط باکتری‌هاشد. همچنین ممکن است تنظیم کننده‌های رشد گیاهی مند اسید انویل استودیو و جیپولین که توسط تمام اکراتیسم‌ها تولید می‌شود، باعث این تاثیر باشد. نتایج بدست آمده از تاثیر کودههای زیستی بر روی نخل‌های آریوکولاز توسط الخطب (۲۰۱۰) نشان داد که کودههای زیستی به کار رفته تعداد برگ را افزایش داده است. نتایج بدست آمده در این آزمایشات که نشان داده کودههای زیستی به‌وسیله تعداد برگ شده است که با نتایج پژوهش فوق مطابقت دارد.

اولین هماشی ملی گیاهان دارویی و کشاورزی پایدار

همدان: دانشکده شهید مفتح
۱۳۹۲ هـ

منابع

۱- ایرانی بور، ش.، ابکری، ر. و صالحی، م. ۱۳۸۵. کودههای بیولوژیک و نقش آنها در سیستم‌های زراعی. قلندره نظام مهندسی کشاورزی و منابع طبیعی. سال چهارم، شماره ۳، ص ۶۲.
۲- پور بیوش، م. مظاهری، د.، جانی‌چی، م.، رحیمی، ا. و توکلی، ا. ۱۳۸۹. تاثیر تیمارهای مختلف حاصلگری خاک بر برخی ویژگی‌های گیاه‌های اکراتوژیک و موسیساز اسپره. مجله تولید گیاهان زراعی. جلد سوم، شماره دوم، ص ۱۱۵.
۳- توکلی دین‌آبادی، ا.، جانی‌چی، م. و مومنی‌پور، س. ۱۳۸۹. مطالعه اثر سطوح مختلف تلقیح با کود زیستی حاصلگری خط کننده فسفات بر خصص‌های گیاه شود در منطقه رودهن. مجموعه مقالات پنجمین کنگره علوم زراعت و اصلاح نباتات ایران، ص ۱۳۳۴-۱۳۳۸.
۴- حکمی، ج.، ۱۳۹۰. گیاه‌های فیکوس (گل‌های آزاد) انتشارات علم کشاورزی ایران، ص ۲۸۸.
۵- دحمی، ع. و فکری، ع.، ۱۳۸۷. تاثیر کاربرد کودههای بیولوژیک بر شاخه و شاخک‌های سیاه‌پویا بر نباتات ایران. (Nigella sativa) مجله پزشکی‌های زراعی ایران. ۲۴-۲۹۴۸.
۶- دهقانی‌‌مشکانی، م.، میری، ح.، میری، ح. و صادقی‌پور، ع. ۱۳۹۰. تاثیر کودههای زیستی و شیمیایی بر عملکرد کمی و کیفی گیاه بابونه سیریک. قلندره‌های گیاهان دارویی، سال دهم، دوره دوم، ص ۴۸.
۷- قاسمی قهساری، م. و کاظمی‌پور، ع. ۱۳۸۸. گل‌کاری عمومی، ص ۲۲۶.
۸- محبوب خماسی، غ. و نجیب‌زاده، ا. ۱۳۸۸. گیاه‌های زیستی. جلد چهارم، درس‌نما. نشر شرکت چاپ لاتین، ص ۴۲۴.

اولین همایش ملی گیاهان دارویی و کشاورزی پایدار
همدان: دانشگاه شهید مفتح ۱۳۹۲ ماه مهر